Learning-Deep-Learning
Source of papers
Researchers’ webpage
Kaiming He
[FAIR]
Raquel Urtasun
[Uber ATG]
Hao Su
[UCSD]
Charles R. Qi
[Stanford, Waymo]
Daniel Cremers
[TUM]
Andreas Geiger
[Univ of Tübingen, MPI]
Sudeep Pillai
[Toyota]
Laura Leal-Taixe
[TUM]
Bat El Shlomo
[GM Israel]
Zhihu
黄飘
黄浴
Best papers
CPVR 2019
ICCV 2019
CVPR 2020
Others
Arxiv sanity
A first glimpse into Autonomous driving’s technical stack
Github repos
MMAction2
[268 stars]
Kalman and Bayesian Fitlers
[8.7k stars]
ipynb book
simple-faster-rcnn-pytorch
(2.1k stars) [
Notes
]
YOLACT/YOLACT++
[2.1k stars]
Yolov3 ultralytic
[4.7k stars]
MonoLoco
[131 stars]
A Baseline for 3D Multi-Object Tracking
[548 stars]
ROLO: recurrent YOLO
point rend
Carla data export
openpilot
3D Lane Dataset
MicroGrad
OpenVSLAM
(2.3k stars)
ORB SLAM2
and
Docker version
PySLAM v2
Youtube channels
Modern C++ for computer vision
SLAM by Cyrill Stachniss
Understanding Sensor Fusion and Tracking by Matlab
Understanding Kalman Filters by Matlab
Talks
Andrej Karpathy’s Talks
Drago Anguelov: Scale AI’s TransformX Presentation
What autonomous driving companies do
Zoox