
Semantic Segmentation on Radar Point Clouds

Ole Schumann,
Markus Hahn

and Jürgen Dickmann
Daimler AG

{ole.schumann, markus.hahn, juergen.dickmann}@daimler.com

Wilhelm-Runge-Str. 11

89081 Ulm, Germany

Christian Wöhler
Technische Universität Dortmund

Image Analysis Group
Otto-Hahn-Str. 4

44227 Dortmund, Germany

Abstract—Semantic segmentation on radar point clouds is a
new challenging task in radar data processing. We demonstrate
how this task can be performed and provide results on a
large data set of manually labeled radar reflections. In contrast
to previous approaches where generated feature vectors from
clustered reflections were used as an input for a classifier, now the
whole radar point cloud is used as an input and class probabilities
are obtained for every single reflection. We thereby eliminate the
need for clustering algorithms and manually selected features.

I. INTRODUCTION

In the last years, image analysis moved from mere clas-

sification of a central object in an image and detection of

objects or object parts to a single combined task: semantic

segmentation. Semantic segmentation describes the task of

assigning a class label or a vector of class probabilities to each

pixel in an image. Semantic instance segmentation enhances

semantic segmentation by differentiating between pixels with

the same class label which belong to physically different

objects so that in addition to pixel-wise classification also

grouping to object instances takes place.

Semantic segmentation is usually accomplished by deep

convolutional neural networks [1] which often show an

encoder-decoder structure [2], [3]. These architectures all rely

on a regular image structure, that is, a rectangular grid with

equally spaced pixels. The dimensions of the grid, i.e., the

width and the height of the image, may be variable if fully

convolutional networks are used. The rectangular grid induces

distance and neighborhood relations between the pixels and

these relations are exploited by convolution kernels with spa-

tial extensions greater than one pixel. Therefore, these methods

work properly if cameras are used as a sensor. For autonomous

cars, radar and lidar sensors supplement cameras to maintain

functional safety. These additional sensors should not only

work complementary but also redundantly. It is hence desirable

to gain high semantic understanding of the surroundings also

from radar and lidar.

In this article, we will perform semantic segmentation on

radar data, i.e., we assign a class label to every measured

reflection. We focus on dynamic objects and work with six

different classes: car, truck, pedestrian, pedestrian
group, bike and static objects. Radar detections ob-

tained after the application of the Constant False Alarm Rate

(CFAR) algorithm constitute a point cloud, where a point

cloud P is defined as a set of N ∈ N individual points

pi ∈ R
d, i = 1, . . . , N in which the order of the points

in the point cloud is of no relevance. For each reflection,

two spatial coordinates (radial distance r and azimuth angle

φ), the ego-motion compensated Doppler velocity v̂r and the

radar cross section (RCS) σ are measured. Hence, a d = 4
dimensional point cloud has to be processed in the semantic

segmentation task. The spatial density of radar reflections can

vary drastically so that large scale grid mapping approaches

are computationally not feasible. Therefore, the usual network

structures used for camera images cannot be applied. The

necessity of an algorithm that does not require an image-like

input can be read off from Fig. 1, where radar detections

collected from four radars during a period of 200ms are

displayed. In this figure, large areas with no measurements

as well as areas with a large number of reflections are visible.

A grid map of the whole scene with approximately 2000
individual reflections would have to cover a large spatial area

of at least 150m × 200m and even at a very low resolution

with cell sizes of 1m× 1m, at most 6% of the pixels in the

grid would have a non zero value.

0 10 20 30 40 50 60 70 80

y in m

−15

−10

−5

0

5

10

15

x
in

m

Car
Car

Car

Fig. 1. Radar point cloud accumulated over 200ms. Reflections of three
different cars are highlighted. Only an excerpt of the complete field of view
is shown.

We therefore use PointNet++ [4] as a basis for our seg-

mentation algorithm. PointNet++ is capable to work directly

on point clouds and it was originally designed to work on 3D

2018 21st International Conference on Information Fusion (FUSION)

978-0-9964527-7-9 ©2018 ISIF 2179

spatial data from laser scanners. In this article, we modified the

architecture to handle two spatial dimensions and two further

feature dimensions.

In a previous work [5], classification was done on feature

vectors, which in turn were obtained from clustered radar

reflections. With our new approach, we avoid these two pre-

processing steps: grouping of radar targets to clusters and

generation of pre-defined feature vectors from these clusters

is no longer necessary. We show that our new approach

outperforms the previous method by a great margin.

The rest of the article is structured as follows: In section

II, we comment on related work and other approaches to the

topic. Afterwards, our network architecture is described in

more detail and we explain our training and testing procedure.

In section IV, we display our results and compare them to

previous approaches. Finally, we give an outlook to our future

work.

II. RELATED WORK

Semantic segmentation is a popular method, when cameras

are used as a sensor and most algorithms are tailored to

image data. The introduction of fully convolutional networks

[1] inspired many similar and later on more advanced neural

network structures like SegNet, [2] U-Net [6], R-CNN [7], and

its successors Fast R-CNN [8], Faster R-CNN [9], and Mask

R-CNN [3]. In order to apply these techniques to radar data,

some pre-processing is necessary. Grid maps provide a way

to transform the spatially inhomogeneous radar reflections into

image like data. The measured reflections are integrated over

time and inserted at the respective positions in a map. Different

maps can be created with this approach, e.g. occupancy

grid maps, which describe the posterior probabilities for cell

occupancy, or RCS maps, which provide information about the

measured RCS values of the reflections in each cell [10]–[13].

This approach works well for static objects, because only

the ego-motion (and not additionally the object’s velocity

and trajectory) has to be taken into account to insert radar

reflections of different times at the correct position in the map.

For dynamic objects, which are considered in this work, either

precise extended target tracking algorithms are needed or the

dynamics of the objects are considered as a feature so that

moving objects create an extended tail of reflections in the

map. Another difficulty is that for sparse data, grid mapping is

not efficient since a potentially large grid is needed to display

relatively few measurements.

To the best of our knowledge, semantic segmentation was

not done before on automotive radar data of moving objects.

Classification was only done on small data sets or large amount

of simulated data [14]–[19].

III. METHODS

A. Network structure

Qi et al. provide with PointNet [20] and PointNet++ [4]

methods to work directly with point clouds so that no previous

mapping step is needed. They perform semantic segmentation

on 3D point clouds obtained by sampling points from meshes

of 3D scans of indoor scenes. We use their architecture as

a basis for our approach. However, the radar data we use in

our experiments differs from 3D indoor data in the following

aspects. Firstly, each radar reflection contains only two instead

of three spatial coordinates, but with the two additional values

from the ego-motion compensated Doppler velocity and the

RCS value, each point pi of the whole point cloud P is

four-dimensional. Secondly, our data shows much greater

differences in density and sampling rate. The 3D scans from

the Stanford 3D semantic parsing data set [21] provide high

density point clouds in which fine details of office interior is

visible, whereas our radar data provides only a few reflections

per object so that for smaller or more distant objects not even

the object’s outline is captured properly, see Fig. 1.

Among others, in PointNet++ a multi-scale grouping mod-

ule (MSG) and a feature propagation module (FP) are defined.

The MSG module considers neighborhoods of multiple sizes

around a central point and creates a combined feature vector at

the position of the central point that describes these neighbor-

hoods. The module contains three steps: selection, grouping

and feature generation. First, Nsample points of the input point

cloud are selected by farthest point sampling, so that the

input point cloud is sampled homogeneously. In the grouping

step, for each of the Nsample selected points, neighborhoods

are created. In our network, neighborhoods are composed of

Nneigh points that lie within a radius r around the central point.

Only the two spatial components of the radar reflections are

considered for the neighborhood search. If a reflection has

more than Nneigh neighbors in the given search radius, only

the first Nneigh points that were found are used for further

computations. If less reflections are found, the first neighbor is

repeated to guarantee a fixed size data structure. In each MSG

module, multiple neighborhoods with different values for r
and Nneigh are created. In the final step, features are generated

for each of the Nsample points by applying convolution layers

with filter size 1 × 1 on the neighborhood tensor with shape

(Nsample, Nneigh, cin), where cin is the number of channels. This

results in a tensor of size (Nsample, Nneigh, cout) on which a final

max pooling layer is applied so that only the contribution of

the neighbor with the highest activation for the respective filter

is taken into account.

The number of points in the output point cloud after a MSG

module is smaller than in the input point cloud so that points in

deeper layers contain more and more abstract features which

provide information about the surrounding points of previous

layers. This process is analogous to convolutional networks for

image processing where the image dimensions are reduced in

each layer. In Fig. 2, the spatial positions as well as the ego-

motion compensated Doppler velocities of radar reflections

are shown and the sub-sampling of the input point cloud after

each MSG module is depicted. The high dimensional feature

vectors that are generated for each point in a MSG module

are not depicted in the figures. A camera image of the scene

is shown in Fig. 3.

For semantic segmentation, the information of the sub-

sampled point cloud is propagated to the full input point cloud.

2018 21st International Conference on Information Fusion (FUSION)

2180

−20 −10 0 10 20

x in m

−5

0

5

10

15

20

25

30

y
in

m

Input

−20 −10 0 10 20

x in m

After MSG 1

−20 −10 0 10 20

x in m

After MSG 2

−20 −10 0 10 20

x in m

After MSG 3

−3

−2

−1

0

1

2

3

D
o
p
p
le
r
v
el
o
ci
ty

in
m
/s

Fig. 2. Excerpt of one example radar point cloud. The spatial coordinates as well as the ego-motion compensated Doppler velocity are plotted. From left to
right: point cloud at the input layer and sub-sampled point clouds after the first, second and third MSG module. The data were accumulated over 500ms.
The camera image of this scene can be found in Fig. 3.

Fig. 3. Camera image of the same scene as in Fig. 2.

This task is carried out by the feature propagation modules:

k layers of MSG modules are followed by k layers of FP

modules which repeatedly propagate the features of the less

populated point cloud to the next higher layer. For each point

pi in the denser point cloud, a weighted average of the feature

vectors of the three nearest neighbors in the sparser point cloud

is computed and – after passing this feature vector through

a set of convolution layers – then assigned to the point pi.
Skip connections from the respective level of the MSG module

improve the propagation of the features.

Our network structure is depicted in Fig. 4 where also the

values of the parameters of the MSG modules are defined.

B. Data set

In this article, we only use real world data that were

collected by two different experimental vehicles, vehicleA and

vehicle B. Vehicle A was equipped with four 77GHz sensors

which were mounted at the two front corners and at the sides

of the vehicle. Only the near range mode of the sensor was

used so that targets up to a range of 100m were detected. Each

sensor had a field of view of ±45°. Vehicle B was equipped

with eight radar sensors with the same specifications as the

sensors of vehicle A. These eight sensors were mounted on

the four corners of the car and at the front left, front right,

back left and back right sides of the car.

The data set of vehicle A (B) contains measurements from

over 4.5 h (6.5min) of driving, that is, over 100 millions

(5 millions) of radar reflections were collected of which 3

millions (100 000) belong to 6200 (191) different moving

objects. All reflections that belong to the same physical object

were manually grouped together and annotated with a label

from the following classes: car, truck, pedestrian,
pedestrian group, bike and static. The distribution
of the reflections among the six classes is shown in Tab. I. In

contrast to our previous work [5], clutter was not examined

in an extra class but treated as static, since in this work

we aim at detecting and classifying only real dynamic objects

from a raw point cloud. Our previous classifier had to deal with

clusters and feature vectors that did not originate from real

objects so that a differentiation between a garbage class and

real objects was necessary. These falsely created clusters and

feature vectors were artifacts from imperfect pre-processing

steps which we try to avoid here.

TABLE I
DISTRIBUTION RADAR REFLECTIONS AMONG THE SIX CLASSES.

Vehicle car ped. ped.group bike truck static

A 1 238 849 315 268 739 690 114 153 603 476 97 714 654

1.23% 0.31% 0.74% 0.11% 0.60% 97.01%

B 69 170 8981 1402 0 16 978 4 742 445

1.43% 0.19% 0.03% 0% 0.35% 98%

C. Training and Testing

Before we did the actual training, fixing of hyper-parameters

was necessary. The number of MSG modules, the number of

sample points Nsample, the number of neighborhoods in each

MSG module with their respective radii r and the number

2018 21st International Conference on Information Fusion (FUSION)

2181

MSG 1
Nsample = 1024

r1 = 1m, Nneigh = 8
r2 = 3m, Nneigh = 32

MSG 2
Nsample = 512

r1 = 2m, Nneigh = 8
r2 = 4m, Nneigh = 32

MSG 3
Nsample = 256

r1 = 3m, Nneigh = 16
r2 = 6m, Nneigh = 32

FP 1

Kernel sizes:
256, 256

FP 2

Kernel sizes:
128, 128

FP 3

Kernel sizes:
128, 128, 128

1D Conv.

Kernel size:
256

1D Conv.

Kernel size:
128

1D Conv.

Kernel size:
6

Dropout

Keep probability:
50%

Dropout

Keep probability:
50%

Softmax
%

classes

Fig. 4. Structure of our network. The red arrows indicate skip connections through which extracted features from MSG modules are passed to the FP module of
the respective layer. The kernel sizes of the three MSG modules are [[32, 32, 64], [64, 64, 128]], [[32, 32, 64], [64, 64, 128]] and [[64, 64, 128], [64, 64, 128]].

of neighboring points Nneigh for each sample point as well

as the number and size of the convolution layers in each

module had to be defined. This was done by examining

reasonable configurations on randomly selected validation sets

and altering these configurations to optimize the performance

of the network even further. A complete sampling of the

parameter space is not feasible due to the enormous size of

this space and the accompanying computational costs.

The finally chosen and best performing architecture is

depicted in Fig. 4.

For evaluation, five-fold cross validation was performed.

That is, the data set was split into five folds with 20% of the

data per fold, and each fold was once used for testing while the

remaining four folds where used as training data. Only data

of vehicle A was used for training. The measurements from

vehicle B were only used for inspecting the generalization

ability of our classifier. The network was training using

stochastic gradient descent with a cross-entropy based loss

function and the Adam optimization scheme [22]. Parts of the

tensorflow source code published in [23] were used.

Due to the large imbalance between static and dynamic data

(approximately 97 million to 3 million), the weights of the

loss function for the static class were reduced so that the

optimization was stopped from assigning almost all points to

the static class.

The training was done for 30 epochs during which data

augmentation took place: Random noise was applied to each

feature dimension, so that the spatial positions of the re-

flections as well as the measured RCS values and the ego-

motion compensated Doppler velocities were altered. The

velocity feature was only modified for reflections of dynamic

objects. In addition, for each dynamic object a random number

q ∈ [0, 0.3] was generated and each reflection of this object

was left out in this epoch with probability q, so that the shapes

and densities of the dynamic objects were changed.

The network itself had no notion of the recording time

of the individual reflections but during training we provided

time windows of length T = 500ms to the network so that

the point cloud became more dense and more reflections per

object could be considered. The reflections of the different

time steps were transformed into the vehicle coordinate system

at the time of the earliest measurement. The input size of

the point clouds was fixed to 3072 reflections. If more than

3072 reflections were measured during the 500ms long time

window, reflections from the static class were removed and

if less than 3072 reflections were measured, one reflection

was re-sampled the required amount of times. Due to the max

pooling layers in the network structure, this oversampling does

not change the outcome of the semantic segmentation.

During testing, the next 3072 reflections were passed

through the network, sorted by the measurement time, so that

no over- or undersampling was necessary.

Training was done on a Linux workstation equipped with a

Nvidia GeForce GTX 1070 GPU.

IV. RESULTS

Evaluation of our system has been performed based on 6×6
confusion matrices and the macro-averaged F1 score (from

now on only called F1 score). The F1 score corresponds to

the harmonic mean of precision and recall [24]. In macro

averaging, each class contributes equally to the total score

– irrespective of the class counts – since an individual F1

score is calculated for each class and these six values are then

averaged.

A. Best Performing Architecture

We first show our results obtained with our best performing

architecture. We used only data from vehicle A for the five-

fold cross-validation. In addition to the two spatial coordinates

x and y (in vehicle coordinates), we enriched the input point

cloud with the ego-motion compensated Doppler velocities and

the RCS values. Hence, a four-dimensional point cloud was

provided as an input.

The resulting confusion matrix is shown in Fig. 5.

Not surprisingly, the majority class with label static
shows the highest true positive value. However, one should

keep in mind that the distinction between reflections that

belong to either moving or non-moving objects is far more

difficult than setting a threshold on the Doppler velocity and

classifying each reflection with velocity below this threshold

2018 21st International Conference on Information Fusion (FUSION)

2182

Car Ped. Ped.Group Bike Truck Static

Predicted label

Car

Ped.

Ped.Group

Bike

Truck

Static

T
ru
e
la
b
el

88.1% 0.1% 0.4% 0.3% 3.5% 7.6%

0.5% 58.6% 30.4% 1.6% 0.0% 9.0%

0.6% 10.8% 81.6% 1.0% 0.1% 5.9%

6.6% 3.7% 5.9% 76.3% 0.1% 7.4%

13.3% 0.0% 0.2% 0.0% 74.6% 11.9%

0.6% 0.1% 0.2% 0.0% 0.2% 99.0%

0

0.3

0.6

1

Fig. 5. Relative confusion matrix after 5-fold cross-validation with the
network structure as depicted in Fig. 4. Input features of the point cloud:
x, y, v̂r, σ.

as static. In real world scenarios, many reflections that do

not belong to a moving object show a non-zero ego-motion

compensated Doppler velocity, caused by errors in the odom-

etry, sensor misalignment, time synchronization errors, mirror

effects or other sensor artifacts. In addition, reflections with

zero Doppler velocity do not necessarily belong to a static

object, since also the bottom of a rotating car wheel or body

parts of a pedestrian that move diametrical to the walking

direction may show no radial velocity.

Objects of the class car are classified second best, followed

by the pedestrian group. Members of the truck class

are often confused with cars. Two reasons can explain this

confusion: Firstly, at high distances only few reflections can

be measured per object so that the spatial extent of an object

can hardly be deduced. Secondly, the transition between car
and truck instances is rather smooth, since, e.g., large SUVs

are hardly distinguishable from smaller trucks.

Another prominent behavior that can be inferred from the

figure is the high confusion between pedestrians and

pedestrian groups. This behavior may be induced by

our training data since for human annotators it is sometimes

possible to assign the reflections of two nearby pedestrians to

the individual persons and hence to create two instances of the

class pedestrian, but sometimes this is not easily possible

and too time demanding so that all reflections are labeled as

a single instance of the class pedestrian group. So in

addition to a complicated task itself, the network also has

to struggle with inconsistencies in the ground truth data. For

many driving tasks it is not critical to know if there are one

or two pedestrians at a certain region, so that the two classes

may be merged together yielding over 91% true positives.

Due to the highly imbalanced data set, inspecting only the

relative confusion matrix normalized to the class counts may

be misleading. We therefore also present the confusion matrix

Car Ped. Ped.Group Bike Truck Static

Predicted label

Car

Ped.

Ped.Group

Bike

Truck

Static

T
ru
e
la
b
el

1091728 986 4748 4184 42756 94447

1491 184724 95797 4938 34 28284

4667 80098 603321 7581 658 43365

7524 4246 6789 87079 114 8401

80121 151 908 226 450172 71898

541744 112519 180073 17962 155747 96706609

0

200000

400000

600000

800000

1000000

Fig. 6. Absolute confusion matrix after 5-fold cross-validation with the
network structure as depicted in Fig. 4. Input features of the point cloud:
x, y, v̂r, σ.

with absolute values in Fig. 6. This visualization highlights

that many false positive dynamic objects are created by the

network (last row in the figure). This effect becomes most

apparent for the class car: only 68% of the predicted car
reflections belong to a dynamic object (cf. first column in

Fig. 6). However, for automotive applications it could be more

desirable to have a high false positive rate for dynamic objects

than a high false negative rate. Reducing the weights in the

loss function for reflections of the static class causes higher

false positive values, so that this parameter allows us to tune

between false positives and false negatives.

It should be noted that the percentages given for the confu-

sion between dynamic and static reflections (last column in

the confusion matrix in Fig. 5) do not represent the percentages

of overlooked objects. If only one reflection of a dynamic

object is classified correctly but the rest of the reflections of

the same object are classified as static, the object is still

detected even though the false negative count increases.

B. Variation of the Input Features

To gain more insight into what information is useful to the

network, we repeat the five-fold cross-validation with three

different sets of input features f1 =
(
x, y, v̂r

)
, f2 =

(
x, y, σ

)
,

f3 =
(
x, y

)
and compare the results to the original features

f0 =
(
x, y, v̂r, σ

)
. In Table II, the F1 scores for each input

configuration are displayed. The following observations can be

made from this table. The more input features are presented to

the network, the higher the performance. Adding RCS values

of each reflection to the input features causes a small increase

in the F1 score (from 0.7303 to 0.7425), whereas including the

ego-motion compensated Doppler velocities has a far greater

effect, levering the score by almost 0.1. Despite the expected

importance of Doppler velocities as a feature, it is interesting

to see that for input features f2 and f3 the performance of the

network is still far above random guess. This implies that the

2018 21st International Conference on Information Fusion (FUSION)

2183

spatial surroundings of a reflection are very expressive features

to the network and build the foundation of the classification

step which is then leveraged by the additional features of the

velocity and RCS values.

TABLE II
CLASSIFICATION SCORES FOR DIFFERENT INPUT FEATURES.

Input Features F1 macro-averaged

f0 =
(
x, y, v̂r, σ

)
0.7425

f1 =
(
x, y, v̂r

)
0.7303

f2 =
(
x, y, σ

)
0.6492

f3 =
(
x, y

)
0.5939

C. Test on Data from Vehicle B
Up to now, only data form vehicle A was used for training

and testing. We now use a network that was trained using only

data from vehicle A to predict the classes of the reflections

measured by vehicle B. The differences in this setup are

twofold: On the one hand, vehicle B is equipped with eight

instead of four radar sensors so that 360° vision around the

vehicle is provided instead of the mainly front and side facing

setup of vehicle A. On the other hand, the data from vehicle

A was collected in German cities and country roads whereas

vehicle B only collected data in the USA. Different road and

street designs as well as on average larger cars constitute

challenges for the algorithm.

Applying our best performing network on these new data

results in an F1 score of 0.46 which is distinctly below

the value obtained by our five-fold cross validation. If the

four sensors at the front of the test vehicle are evaluated

independently from the four back-facing sensors, the F1 score

increases to 0.48.
Since the data set from vehicle B is very small compared

to the data set of vehicle A, one has to be cautious with

the interpretation of the results. However, it becomes obvious

that changing the sensor setup does have an influence on the

performance of the classifier.

D. Comparison with Previous Approach

In a previous work [5], we used a combination of DBSCAN

[25] for clustering and an LSTM network [26] for classifica-

tion to generate class labels for sequences of feature vectors.

Previously, we measured our performance on feature vectors
generated on ground truth clusters. In this article, evaluation

of this approach is done per-reflection by projecting the class

labels of the feature vectors back to the original reflections of

the clusters.

We train the LSTM network and our new approach on

the same data set and evaluate both methods on an identical

test set. For a fair comparison, the LSTM is not tested on

the feature vectors of the ground truth clusters but rather on

the feature vectors generated from the clusters obtained by

applying DBSCAN on the point cloud. In contrast to our

current approach, the LSTM also learns to classify feature

vectors as garbage, if they originate from clusters which

do not belong to real objects. If the LSTM rejects such a

feature vector, we treat the associated points as static in

the comparison.

Our new method reaches an F1 score of 0.734 on this

selected test set, whereas the DBSCAN+LSTM approach

results in a score of only 0.597. The new approach creates

far fewer false positive dynamic objects and has higher true

positive counts in all classes. The most appealing feature is

that three times less reflections are erroneously considered

as static so that possibly less objects are overlooked. The

confusion of reflections originating from dynamic objects with

ones from the static class does not only stem from bad

classification results of the LSTM, but mostly because of

insufficient clustering so that the LSTM has never the chance

to classify certain reflections.

E. Visualizations

It is informative to visualize the outputs of different network

layers during a forward pass of one scene. Fig. 2 displays

the spatial positions as well as the Doppler velocities of one

example scene at the input level and after the three MSG

modules.

It is difficult to visualize the convolution kernels of the

different layers, since only 1 × 1 convolutions are performed

and hence meaningful images of the filters themselves do

not exist. However, we passed different scenes through the

network and collected the network outputs before the last

convolution layer. From this output, we randomly selected

1000 points from each class along with their 128-dimensional

feature vectors and passed this high dimensional point cloud

through the t-SNE dimensionality reduction algorithm [27] to

obtain a two-dimensional point cloud. This is visualized in Fig.

7, where four distinct clusters for the classes car, truck,
bike and static can be observed. The reflections stemming

from pedestrians or pedestrian groups are not well

separated, in accordance with the confusion matrix in Fig. 5.

Reflections from the car and bike class enrich the center of

the point cloud, displaying points which are hard to classify.

Finally, Fig. 8 displays the same scene as in Fig. 2, but now

the predicted class labels are shown instead of the Doppler

velocity. All three pedestrians, the truck and the car were

identified correctly. However, some clutter behind the right-

most pedestrian was falsely classified as a pedestrian group

and a few reflections behind the car were also erroneously

labeled as members of the car class. Despite that, the

semantic information of the scene is well represented.

V. CONCLUSION AND OUTLOOK

In this paper, we provided results for semantic segmentation

on radar data using a variant of PointNet++ as our classifica-

tion algorithm. We showed that our new approach outperforms

our previous method which included two now obsolete pre-

processing steps, namely clustering and feature generation. In

addition, we demonstrated that utilizing both, the RCS value

and the ego-motion compensated Doppler velocity, improves

2018 21st International Conference on Information Fusion (FUSION)

2184

−60 −40 −20 0 20 40 60

−60

−40

−20

0

20

40

60
Car

Pedestrian

Pedestrian Group

Bike

Truck

Static

Fig. 7. Two dimensional embedding of the 128 dimensional feature vectors
of the second to last convolutional layer in our network. The non-linear t-SNE
method was used for the embedding.

the classification results, whereby the Doppler velocity has a

greater impact on the results.

In future works, we will focus on two different aspects. On

the one hand, it seems beneficial to incorporate time informa-

tion into the network. The temporal evolution of objects is a

descriptive feature that should at least improve the distinction

between static and dynamic class instances. One possible way

to achieve this goal is to integrate a recurrent neural network

structure into PointNet++. A simpler way would be to present

the measurement time stamp as an additional feature. On the

other hand, an extension to semantic instance segmentation is

desirable. Currently, only class labels are provided for each

reflection without notion of the object instance this reflection

belongs to. We therefore do not know how many different

objects exist in a scene but only have knowledge about the

amount of reflections that belong to an object class. Class-

aware clustering algorithms are one possibility to generate in-

stances from the reflections but combined learning of instances

and class affiliation may yield a higher total performance.

REFERENCES

[1] J. Long, E. Shelhamer, and T. Darrell, “Fully Convolutional Networks
for Semantic Segmentation,” in The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2015. [Online]. Available:
http://arxiv.org/abs/1411.4038

[2] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A Deep
Convolutional Encoder-Decoder Architecture for Image Segmentation,”
arXiv preprint, nov 2015. [Online]. Available: http://arxiv.org/abs/1511.
00561

[3] K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN,”
in Proceedings of the International Conference on Computer Vision
(ICCV), 2017. [Online]. Available: https://arxiv.org/pdf/1703.06870.pdf

[4] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep
Learning on Point Sets for 3D Classification and Segmentation,”
Proc. Computer Vision and Pattern Recognition (CVPR), IEEE,
dec 2017. [Online]. Available: https://arxiv.org/pdf/1612.00593.pdfhttp:
//arxiv.org/abs/1612.00593

[5] O. Schumann, M. Hahn, J. Dickmann, and C. Wöhler, “Comparison
of random forest and long short-term memory network performances
in classification tasks using radar,” in Sensor Data Fusion: Trends,

Fig. 8. Predicted class labels for each reflection for one example scene. The
bounding boxes were added manually for association between the point cloud
and the camera image.

Solutions, Applications (SDF). IEEE, oct 2017, pp. 1–6. [Online].
Available: http://ieeexplore.ieee.org/document/8126350/

[6] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional
Networks for Biomedical Image Segmentation,” arXiv preprint, may
2015. [Online]. Available: http://arxiv.org/abs/1505.04597

[7] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2014. [Online]. Available: http://arxiv.org/abs/1311.2524

[8] R. Girshick, “Fast R-CNN,” in IEEE International Conference on
Computer Vision (ICCV), 2015. [Online]. Available: http://arxiv.org/
abs/1504.08083

[9] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards
Real-Time Object Detection with Region Proposal Networks,” Neural
Information Processing Systems (NIPS), 2015. [Online]. Available:
http://arxiv.org/abs/1506.01497

[10] J. Lombacher, M. Hahn, J. Dickmann, and C. Wohler, “Detection
of arbitrarily rotated parked cars based on radar sensors,” in 16th
International Radar Symposium (IRS). IEEE, jun 2015, pp. 180–185.
[Online]. Available: http://ieeexplore.ieee.org/document/7226281/

[11] ——, “Potential of radar for static object classification using deep
learning methods,” in IEEE MTT-S International Conference on
Microwaves for Intelligent Mobility (ICMIM). IEEE, may 2016, pp.
1–4. [Online]. Available: http://ieeexplore.ieee.org/document/7533931/

[12] ——, “Object classification in radar using ensemble methods,” in
IEEE MTT-S International Conference on Microwaves for Intelligent
Mobility (ICMIM). IEEE, mar 2017, pp. 87–90. [Online]. Available:
http://ieeexplore.ieee.org/document/7918863/

2018 21st International Conference on Information Fusion (FUSION)

2185

[13] J. Lombacher, K. Laudt, M. Hahn, J. Dickmann, and C. Wohler,
“Semantic radar grids,” in IEEE Intelligent Vehicles Symposium
(IV). IEEE, jun 2017, pp. 1170–1175. [Online]. Available: http:
//ieeexplore.ieee.org/document/7995871/

[14] M. Özcan, S. Z. Gürbüz, A. R. Persico, C. Clemente, and J. Soraghan,
“Performance Analysis of Co-Located and Distributed MIMO Radar for
Micro-Doppler Classification,” in EuRAD 2016, 2016, pp. 85–88.

[15] E. Schubert and M. Kunert, “Human RCS measurements and
dummy requirements for the assessment of radar based active
pedestrian safety systems,” 14th International Radar Symposium (IRS),
2013. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?
arnumber=6581669

[16] S. Heuel and H. Rohling, “Pedestrian recognition based on 24 GHz radar
sensors,” in 11th International Radar Symposium (IRS). Vilnius: IEEE,
2010, pp. 1–6.

[17] ——, “Two-stage pedestrian classification in automotive radar systems,”
12th International Radar Symposium (IRS), pp. 477–484, 2011.

[18] ——, “Pedestrian classification in automotive radar systems,” in 13th
International Radar Symposium (IRS). Warsaw: IEEE, 2012, pp. 39–
44.

[19] P. Molchanov and A. Vinel, “Radar frequency band invariant pedestrian
classification,” 14th International Radar Symposium (IRS), pp. 1–6,
2013.

[20] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep
Hierarchical Feature Learning on Point Sets in a Metric Space,” arXiv
preprint, jun 2017. [Online]. Available: http://arxiv.org/abs/1706.02413

[21] I. Armeni, O. Sener, A. R. Zamir, H. Jiang, I. Brilakis, M. Fischer, and
S. Savarese, “3D Semantic Parsing of Large-Scale Indoor Spaces,” in
Proceedings of the IEEE International Conference on Computer Vision
and Pattern Recognition (CVPR), 2016.

[22] D. P. Kingma and J. L. Ba, “Adam: a Method for Stochastic Optimiza-
tion,” International Conference on Learning Representations 2015, pp.
1–15, 2015.

[23] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++,
Tensorflow Implementation,” 2017. [Online]. Available: https://github.
com/charlesq34/pointnet2

[24] D. M. W. Powers, “Evaluation: From Precision, Recall and F-Measure
to ROC, Informedness, Markedness & Correlation,” Journal of Machine
Learning Technologies, vol. 2, no. 1, pp. 37–63, 2007.

[25] R. J. G. B. Campello, D. Moulavi, and J. Sander, “Density-
Based Clustering Based on Hierarchical Density Estimates,” in
Advances in Knowledge Discovery and Data Mining. Springer,
Berlin, Heidelberg, 2013, pp. 160–172. [Online]. Available: http:
//link.springer.com/10.1007/978-3-642-37456-2{_}14

[26] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997. [Online]. Available:
http://www7.informatik.tu-muenchen.de/{~}hochreit

[27] L. van der Maaten and G. Hinton, “Visualizing high-dimensional data
using t-sne,” Journal of Machine Learning Research, vol. 9, pp. 2579–
2605, 2008.

2018 21st International Conference on Information Fusion (FUSION)

2186

